4,318 research outputs found

    New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    Get PDF
    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities

    Model simulation studies to clarify the effect on saccadic eye movements of initial condition velocities set by the Vestibular Ocular Reflex (VOR)

    Get PDF
    Voluntary active head rotations produced vestibulo-ocular reflex eye movements (VOR) with the subject viewing a fixation target. When this target jumped, the size of the refixation saccades were a function of the ongoing initial velocity of the eye. Saccades made against the VOR were larger in magnitude. Simulation of a reciprocally innervated model eye movement provided results comparable to the experimental data. Most of the experimental effect appeared to be due to linear summation for saccades of 5 and 10 degree magnitude. For small saccades of 2.5 degrees, peripheral nonlinear interaction of state variables in the neuromuscular plant also played a role as proven by comparable behavior in the simulated model with known controller signals

    On the Formation of Multiple-Shells Around Asymptotic Giant Branch Stars

    Full text link
    Two types of models for the formation of semi-periodic concentric multiple shells (M-shells) around asymptotic giant branch (AGB) stars and in planetary nebulae are compared against observations. Models that attribute the M-shells to processes in an extended wind acceleration zone around AGB stars result in an optically thick acceleration zone, which reduces the acceleration efficiency in outer parts of the extended acceleration zone. This makes such models an unlikely explanation for the formation of M-shells. Models which attribute the M-shell to semi-periodic variation in one or more stellar properties are most compatible with observations. The only stellar variation models on time scales of 50-1500 years that have been suggested are based on an assumed solar-like magnetic cycle. Although ad-hoc, the magnetic cycle assumption fits naturally into the increasingly popular view that magnetic activity plays a role in shaping the wind from upper AGB stars.Comment: 8 pages, Submitted to Ap

    The COBE DIRBE Point Source Catalog

    Full text link
    We present the COBE DIRBE Point Source Catalog, an all-sky catalog containing infrared photometry in 10 bands from 1.25 microns to 240 microns for 11,788 of the brightest near and mid-infrared point sources in the sky. Since DIRBE had excellent temporal coverage (100 - 1900 independent measurements per object during the 10 month cryogenic mission), the Catalog also contains information about variability at each wavelength, including amplitudes of variation observed during the mission. Since the DIRBE spatial resolution is relatively poor (0.7 degrees), we have carefully investigated the question of confusion, and have flagged sources with infrared-bright companions within the DIRBE beam. In addition, we filtered the DIRBE light curves for data points affected by companions outside of the main DIRBE beam but within the `sky' portion of the scan. At high Galactic latitudes (|b| > 5 degrees), the Catalog contains essentially all of the unconfused sources with flux densities greater than 90, 60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns, respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7, 1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the completeness is less certain because of the large DIRBE beam and possible contributions from extended emission. The Catalog also contains the names of the sources in other catalogs, their spectral types, variability types, and whether or not the sources are known OH/IR stars. We discuss a few remarkable objects in the Catalog. [abridged]Comment: Accepted for publication in the Astrophysical Journal Supplement. The full tables are available at http://www.etsu.edu/physics/bsmith/dirbe

    Two dimensional pattern formation in a chemotactic system

    Get PDF
    Chemotaxis is known to be important in cell aggregation in a variety of contexts. We propose a simple partial differential equation model for a chemotactic system of two species, a population of cells and a chemoattractant to which cells respond. Linear analysis shows that there exists the possibility of spatially inhomogeneous solutions to the model equations for suitable choices of parameters. We solve the full nonlinear steady state equations numerically on a two dimensional rectangular domain. By using mode selection from the linear analysis we produce simple pattern elements such as stripes and regular spots. More complex patterns evolve from these simple solutions as parameter values or domain shape change continuously. An example bifurcation diagram is calculated using the chemotactic response of the cells as the bifurcation parameter. These numerical solutions suggest that a chemotactic mechanism can produce a rich variety of complex patterns

    The core structure of presolar graphite onions

    Get PDF
    Of the ``presolar particles'' extracted from carbonaceous chondrite dissolution residues, i.e. of those particles which show isotopic evidence of solidification in the neighborhood of other stars prior to the origin of our solar system, one subset has an interesting concentric graphite-rim/graphene-core structure. We show here that single graphene sheet defects in the onion cores (e.g. cyclopentane loops) may be observable edge-on by HREM. This could allow a closer look at models for their formation, and in particular strengthen the possibility that growth of these assemblages proceeds atom-by-atom with the aid of such in-plane defects, under conditions of growth (e.g. radiation fluxes or grain temperature) which discourage the graphite layering that dominates subsequent formation of the rim.Comment: 4 pages, 7 figures, 11 refs, see also http://www.umsl.edu/~fraundor/isocore.htm

    CO and HI observations of an enigmatic cloud

    Full text link
    An isolated HI cloud with peculiar properties has recently been discovered by Dedes, Dedes, & Kalberla (2008, A&A, 491, L45) with the 300-m Arecibo telescope, and subsequently imaged with the VLA. It has an angular size of ~6', and the HI emission has a narrow line profile of width ~ 3 km/s. We explore the possibility that this cloud could be associated with a circumstellar envelope ejected by an evolved star. Observations were made in the rotational lines of CO with the IRAM-30m telescope, on three positions in the cloud, and a total-power mapping in the HI line was obtained with the Nancay Radio Telescope. CO was not detected and seems too underabundant in this cloud to be a classical late-type star circumstellar envelope. On the other hand, the HI emission is compatible with the detached-shell model that we developed for representing the external environments of AGB stars. We propose that this cloud could be a fossil circumstellar shell left over from a system that is now in a post-planetary-nebula phase. Nevertheless, we cannot rule out that it is a Galactic cloud or a member of the Local Group, although the narrow line profile would be atypical in both cases.Comment: Accepted for publication in Astronomy and Astrophysic

    Internal control: Progress and perils

    Get PDF
    https://egrove.olemiss.edu/dl_proceedings/1093/thumbnail.jp

    Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields

    Full text link
    An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics (2006
    • …
    corecore